Application provisioning protocol

Introduction

This document specifies the provisioning protocol, that is the say the various exchanges
between the OASIS Platform and the Applications that start when a Manager of an
organization subscribes (or “buys”) an application and ends when the application instance is
created and its various services are declared in the catalog.

Definitions

Application — an abstract application, not directly useable, declared in the catalog and visible
in the app store, that can be the object of an instantiation. For instance, “Ushahidi” is an
application.

Application instance — a runnable copy of an application, created within the context of an
identified authority (which may be an individual or an organization, for instance the “buying
organization” or the application provider).

Service — an “endpoint” of an application instance, which is addressable through a URL.
Services are declared in the catalog and may be visible in the app store. The icons visible in a
user’s dashboard on the Portal are Services. An application instance has at least one and
possibly many Services.

The Catalog — the catalog is a database of all applications, instances and services. It is used
internally by the Portal to display a user’s dashboard, to browse the app store, etc.

The App Store — a system that allows users to :
> find Services that are publicly available and add them to their Dashboards,
> find Applications that are instantiable and request the creation of an instance in the
context of their organization.

App Factory — a REST service provided by application providers that the Platform calls to
initiate application instantiation.

Important note: the App Factory endpoint is used to provide critical security information to
the application (for instance, client ID / client secret). We therefore mandate the use of SSL or
TLS security for that endpoint.

Protocol overview

Step O : declare your application in the Catalog
(This step will be done manually by Atol/Open Wide for the prepilot / start of the pilot phase)

The application must exist in the catalog to be instantiated.
The exact information required is annexed to this document, but in particular the Catalog
contains :
e the App Factory’s URL
e an instantiation_secret string used to sign instantiation requests
o this should not be confused with client_secret. The instantiation_secret is
application-wide and is used to authorize the Kernel to ask for new instances to
the App Factory. A client_secret (and in particular the client_id) is always
related to a particular app instance.
e a cancellation_uri and cancellation_secret used to cancel pending instantiations.

Step 1 : a Manager buys the application
The platform verifies that the user is indeed allowed to act on behalf of their organization, then
generates :

e aunique instance_id

e aunique client_id

e aclient_secret

It then issues a POST request to the App Factory’s URL, providing :
instance_id
client _id
client_secret
user (representing the Manager, with its OASIS identifier and display name)
organization (optional — the Organization on behalf of which the Manager is acting,
with its OASIS identifier, name and type)
instance registration URL
deprecated:
o user_id (OASIS identifier of the Manager)
o organization_id (optional — OASIS identifier of the Organization on behalf of
which the Manager is acting)
o organization_name (optional — name of that organization)

This content is encoded in JSON. A HMAC-SHA1 hash of the JSON string is computed using
the application’s instantiation_secret as key, and inserted in the X-Hub-Signature header as
per https://pubsubhubbub.googlecode.com/qit/pubsubhubbub-core-0.4.html#authednotify.

https://pubsubhubbub.googlecode.com/git/pubsubhubbub-core-0.4.html#authednotify

This reasonably certifies that the request does come from the OASIS Kernel (which is the only
one to know the instantiation_secret string).

Example request (with the signature mocked out for now):

POST /admin/create-instance HTTP/1.1

Accept: application/json, application/*+json
X-Hub-Signature: shal=** HMAC-SHAl digest of payload **
Content-Type: application/json;charset=UTF-8
Content-Length: 284

Host: localhost:9090

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.3.1 (java 1.5)
Accept-Encoding: gzip,deflate

{"instance_id":"8f814322-68ac-4fa3-87a8-e4e8d28f5706",
"client_id":"41184194-d40b-4720-87a9-284d2fa9d5ed",
"client_secret":"41184194-d40b-4720-87a9-284d2fa9d5ed",
"user": {"id":"a399684b-4ea3-49c3-800b-b8a0dbf1131cb",

"name": "John Doe", email address: "jd@example.org"},
"user_id":"a399684b-4ea3-49c3-800b-b8a0dbf1131cb",
"organization":{"id"::"a2342900-f9eb-4d54-bf30-1e@d763ec4af",

"organization_name": "Valence", "type": "PUBLIC_BODY"},
"organization_id":"a2342900-19eb-4d54-bf30-1e0d763ecdaf",
"organization_name": "Valence",

"instance_registration_uri":

"https://kernel.ozwillo.eu/apps/pending-instance/8f814322-68ac-4fa3-8

7a8-e4e8d28f5706" }

The Factory replies with either:
2xx: request acknowledged, will do the job
any 4xx error: request cannot be honoured (for instance, the organization already
possesses an instance of this application and it is limited to one)
e any other non-2xx will be declared a failure too (maybe we’ll follow redirect, but let’s
say for now that we won't).

Step 2: provision the application

Application providers are free to implement this step as they will. It can be:
e fully automatic
e half automatic (requires a manual validation)
e fully manual

Or anything in between

Note that the new instance MUST use the client_id / client_secret it's been provided with for
authentication.

Step 3: acknowledge the result
Application providers must POST to the Kernel's Application Instantiated service, providing:

instance_id (the one that’s been provided by the Kernel)

a destruction URI and secret

a list of Services that the application wants created

a list of scopes that the application wants defined (scopes needed to use the
application’s own exposed APIs)

a list of scopes that the application’s Services will use, each with a motivation.

For each Service, the following information is provided (the full list is annexed to this
document):

a local identifier (for instance “back office”)

the Service’s URL and notification URL (see annex for the difference between the two)
its visibility status: “true” means the service is visible in the app store, “false” means it
isn’t. Also, when visible=false, the Kernel will prevent access to the Service from users
that have not been explicitly allowed to use the instance by the Manager in the portal.
Typically a public-body-only back office will have visible=false, while a public service
will have visible=true. A public service might however have visible=false while being
configured, or for dogfooding, before being made publicly accessible (and
visible=true).

whether the service is has restricted access: “true” means that the application cannot
be made visible. Typically a public-body-only back office will have restricted=true,
while a public service will have restricted=false.

the name of the service (in all OASIS-supported languages)

the description of the service (in all OASIS-supported languages)

the app store metadata: categories, territory tag, payment option, target audience.
These fields are only relevant for visible=true services

redirect_uris: whitelist of values used as redirect_uri during the authentication; values
must be different for each service within an application instance.
post_logout_redirect_uris: whitelist of values used as post_logout_redirect_uri during
single sign-out (optional if post_logout_redirect_uri is not used)

For each defined Scope, the following information is provided (the full list is annexed to this
document):

an identifier (for instance “addevent”, the namespace for scopes is the application
instance)

the name of the scope (in all OASIS-supported languages; for instance “add Ushahidi
events”)

the description of the scope (in all OASIS-supported languages)

Scope identifiers are a simple string that corresponds to the permission scopes that client
applications require to access part of this API's functionality. For instance, application
“Ushahidi” may define an API to add new events on a map; it would then register the scope
“addevent”’. When a third party application wants to add an event on behalf of a user, it
requires the “<instance_id>:addevent” scope (where “<instance_id>" is the instance ID of the
application instance) as part of its token negotiation (the user is asked to confirm that they
want to give the “add Ushahidi events” permission to the app).

Finally, for each needed Scope, the following information is provided (the full list is annexed to
this document):

e The scope’s full identifier (e.g. “address”, “email”, “phone” or
“c75aa12d-2f78-4fc5-b935-2945362f05a1:addevent”)

e the motivation for its use (in all OASIS-supported language). This will be displayed to
the user when he’ll be asked to authorize the application so he knows why the
application wants those scopes and can therefore make an informed choice.

Applications need not give a motivation for each and every scope they’ll use. If they don’t
though, the user will have no way of knowing how the scopes will be used by the application
and why it needs them.

I” 3
’

The Kernel responds with an object mapping, for each service identifier, its unique id in the
Catalog.

Example request (this instance creates three Services: back, front, and
electoral_roll_registration).

POST /apps/pending-instance/8f814322-68ac-4fa3-87a8-e4e8d28f5706
HTTP/1.1

Accept: application/json, application/*+json

Authorization: Basic
NDEXODQxO0TQtZDQwYi00NzIwLTg3YTktMjg0ZDImYT1KNWVKOjQXMTgOMTKOLWQOMGItN
DcyMCO4N2E5LTIANGQyZmES5ZDV1ZA==

Content-Type: application/json;charset=UTF-8

Content-Length: 3198

Host: kernel.ozwillo.eu

Connection: Keep-Alive

User-Agent: Apache-HttpClient/4.3.1 (java 1.5)

Accept-Encoding: gzip,deflate

{"services":[

{"local_id":"back",
"service _uri":"http://localhost:9090/back/valence",
"redirect_uris": [

"http://localhost:9090/back/valence/oasis profile callback"],
"visible":false,
"restricted":true,

"name" :"Gestion des procédures citoyennes",

"description”:"Outil de traitement des des procédures citoyennes en
cours",
"icon":"http://www.whatever.com",

"notification _uri":"http://localhost:9090/back/valence/notifications™

3
"category_ids":[],
"payment_option":"PAID",
"target_audience":["PUBLIC_BODIES"],
"territory_id":"26000",
"name#it":"Citizen Procedures for Valence",
"nametten" :"Citizen Procedures for Valence",
"name#es" :"Citizen Procedures for Valence",
"name#fr":"Procédures citoyennes de Valence",

"description#bg":"Citizen procedures for Valence",

"description#itr":"Citizen procedures for Valence",

"description#tica”:"Citizen procedures for Valence",

"name#ttr":"Citizen Procedures for Valence",

"name#ca":"Citizen Procedures for Valence",

"description#it":"Citizen procedures for Valence",

"description#tfr":"Portail de dématérialisation de procédures pour
Valence",
"description#ten”:"Citizen procedures for Valence",

"namettbg" :"Citizen Procedures for Valence",

"description#tes":"Citizen procedures for Valence"

¥

{"local id":"front",
"service_uri":"http://localhost:9090/front/valence”,
"redirect_uris": [
"http://localhost:9090/front/valence/oasis_profile_callback"],
"visible":true,

"name" :"Procédures citoyennes de Valence",

"description”:"Portail de dématérialisation de procédures pour
Valence",

"icon":"http://www.whatever.com",

"notification uri":"http://localhost:9090/front/valence/notifications

"
J

"category_ids":[],

"payment_option":"FREE",
"target_audience":["CITIZENS"],
"territory_id":"26000",

"name#tit":"Citizen Procedures for Valence",
"name#en" :"Citizen Procedures for Valence",
"namettes" :"Citizen Procedures for Valence",
"name#fr":"Procédures citoyennes de Valence",

"description#tbg":"Citizen procedures for Valence",

"description#ttr”:"Citizen procedures for Valence",

"description#ica”:"Citizen procedures for Valence",

"name#tr":"Citizen Procedures for Valence",

"namettca":"Citizen Procedures for Valence",

"description#it"”:"Citizen procedures for Valence",

"description#fr":"Portail de dématérialisation de procédures pour
Valence",

"description#ten”:"Citizen procedures for Valence",

"namettbg" :"Citizen Procedures for Valence",

"description#tes”:"Citizen procedures for Valence"
¥
{"local _id":"electoral roll registration”,

"service uri":
"http://localhost:9090/front/valence/form/electoral roll registration
/init",

"redirect_uris": [
"http://localhost:9090/front/valence/form/electoral_roll registration
/oasis_profile_callback"],

"visible":true,

"name" :"Pré-inscription sur liste électorale”,

"description”:null,

"category_ids":[],

"payment_option":"FREE",

"target_audience":["CITIZENS"],

"territory id":"26000",

"name#it":"Pré-inscription sur liste électorale”,

"name#en" :"Pré-inscription sur liste électorale”,

"name#tr":"Pré-inscription sur liste électorale”,

"name#ca":"Pré-inscription sur liste électorale”,

"name#es" :"Pré-inscription sur liste électorale”,

"name#fr":"Pré-inscription sur liste électorale”,

"name#bg" :"Pré-inscription sur liste électorale”

}
1,

"scopes": [

{"scope_id": "ck files",

"name": "Piéces jointes administratives pour Valence",
"description": "Fichiers joints aux formulaires pour la Ville de

Valence"

}

1,

"needed_scopes": [

{"scope_id": "profile",
"motivation”: "Utilisé pour pré-remplir les formulaires",
"motivation#fr": "Utilisé pour pré-remplir les formulaires",
"motivation#en"”: "Used to auto-fill form fields"

¥

{"scope_id": "email",
"motivation”: "Utilisé pour pré-remplir les formulaires",
"motivation#fr": "Utilisé pour pré-remplir les formulaires"”,
"motivation#en": "Used to auto-fill form fields"

¥

{"scope_id": "address",
"motivation": "Utilisé pour pré-remplir les formulaires",
"motivation#fr": "Utilisé pour pré-remplir les formulaires",
"motivation#en"”: "Used to auto-fill form fields"

}s

1,

"instance_id":"8f814322-68ac-4fa3-87a8-e4e8d28f5706",
"destruction_uri":"http://localhost:9090/admin/drop-instance”,
"destruction_secret":"78LOC3RKg60VPOrXAp6FOd5UXG70YpC56enl13If5DIe”

}

And the response:

HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked

Date: Thu, 03 Jul 2014 14:57:41 GMT

{"back":"al5243e3-17a0-4511-b15c-c88e6784e287",
"front":"31336385-f2ff-4488-8835-1f7da53669b9",
"electoral_roll registration":"28e513d2-881a-4856-a542-0f09889cfb6a"

}

At this stage:
e the application instance is created

its services are declared in the catalog

its scopes are declared and available for use by other applications

the Manager is automatically subscribed to all private services

the public services are visible in the app store (and available for use by users)

The next stages will be for the Manager to use the App management tab in the Portal to
assign the back office services to organization users, and to switch on / off the public services
(for instance most applications will declare their services as private, to let the manager do
basic customization before going live towards the public).

If the instance creation has failed for some reason, the App Factory must issue a DELETE
request on the instance registration URL (in the example:
/apps/pending-instance/8f814322-68ac-4fa3-87a8-e4e8d28f5706) so that the
platform does not show endless “pending” instance creation requests.

Step 4 (optional): subscription callback

NOT IMPLEMENTED YET

Individual Services may register a callback URL that will be notified (through POST +
signature as above) when a user adds the application to their dashboard.

The Kernel provides a subscription id along with the user and organization id; if the service
provides this URL, it must call the subscription-created service to approve (or deny) the
subscription.

Instance destruction

When a user or organization no longer needs an instance, they can destroy it. The Kernel
then calls the registered destruction_uri in a manner similar to the way it called the App
Factory.

The Kernel issues a POST request to the destruction URI providing the instance_id of the
instance to be destroyed (this allows sharing the same destruction URI and secret by several
instances, but the Kernel also supports having separate destruction URI and secret for each
instance).

Example request:
POST /admin/drop-instance HTTP/1.1
Host: localhost:9090
X-Hub-Signature: shal=** HMAC-SHAl digest of payload **
Content-Type: application/json;charset=UTF-8

{"instance_id": "8f814322-68ac-4fa3-87a8-e4e8d28f5706"}

The destruction URI must respond with a successful status (200, 202 or 204) in a timely
manner. The Kernel will then delete the instance from its database and it will be impossible for
users to authenticate to it.

If the request times out, the Kernel will delete the instance from its database nevertheless.
Any (timely) non-successful status will abort the destruction (so it can be retried later).

Pending instances (those for which a request has been made to the App Factory, but the
instance_registration_uri hasn’t been called back yet) can be cancelled using the same
mechanism, but at the application-wide cancellation_uri. If that URI is different from
provisioned instances’ destruction_uri, it should reject requests to destroy provisioned
instances (and the instance-specific destruction_uri should be the only way to destroy the
instance).

Appendices

Appendix 1: catalog information

The following are required for catalog entries (applications):

Field name Field description

name Name in the default language (try to remain
below 20 characters)

name#<language> (ex: name#tr) Name in the given language (optional, try to
remain below 20 characters)

description Description in the default language (at least
300 characters)

description#<Language> (ex: description#tr) | Description in the given language (optional,
at least 300 characters)

tos_uri Terms of service URI implicitly accepted on
purchase, in the default language

tos_uri#z<Language> (ex: tos_uri#fr) Terms of service URI implicitly accepted on
purchase, in the given language

policy_uri Privacy Policy URI implicitly accepted on
purchase, in the default language

policy_uri#<Language> (ex: policy_uri#fr)

Privacy Policy URI implicitly accepted on
purchase, in the given language

icon

URL of the app icon in the default language
(expected size: 64px x 64px)

icon#<Language> (ex: icon#tr)

URL of the app icon in the give language
(optional)

screenshot_uris

list of screenshot URLs (expected size:
800px x 450px)

contacts

list of URLs (or mailto) to contact/support

category_ids

IDs of the app store categories

payment_option

for app store: FREE or PAID

target_audience

for app store: list of CITIZENS,
PUBLIC_BODIES, COMPANIES

instantiation_uri

Instantiation endpoint, URL of the App
Factory

instantiation_secret

Secret used to compute the instantiation
request signature

cancellation_uri

Cancellation endpoint, to cancel pending
instantiations.

cancellation_secret

Secret used to compute the cancellation
request signature.

visible if false, the application is not visible in the
app store (can be used for single-instance
apps)

provider_id ID of the application provider organization

Appendix 2: JSON messages

Kernel -> App Factory (Create instance request)

Field name

Description

instance_id

ID of the instance created

client _id

For authentication

client_secret

For authentication

DEPRECATED

user

Object representing the user who “bought”
the app (contains his ID, name and email
address).

Scheduled to replace user _id.

DEPRECATED

DEPRECATED

organization

(optional) Object representing the
organization (if any) for which the app has
been “bought” (contains its ID, name and
type).

Scheduled to replace organization_id and
organization_name.

instance_registration_uri

For acknowledgement

App factory -> Kernel (Instance created)

Field name Description

instance_id

services List of Service objects (there must be at
least one service)

scopes List of Scope objects

needed_scopes

List of NeededScope objects

destruction_uri

Destruction endpoint for the instance

destruction_secret

Secret used to compute the destruction
request signature

Service object:

Field name Description

local_id Internal identifier (eg “front office”)

name Name in the default language

name#lang Name in language “lang” (two-letter code, eg
es, ca...)

description Description in the default language

description#lang

Description in language “lang”

tos_uri Terms of service URI implicitly accepted on
purchase, in the default language

tos_uri#lang Terms of service URI implicitly accepted on
purchase, in the given language

policy_uri Privacy Policy URI implicitly accepted on

purchase, in the default language

policy_uri#lang

Privacy Policy URI implicitly accepted on
purchase, in the given language

icon

URL of the icon in the default language

icon#lang

URL of the icon in language “lang”

screenshot_uris

list of screenshot URLSs

contacts

list of URLs (or mailto) to contact/support

category_ids

list of app store category ids (to be defined)

payment_option

“‘FREE” or “PAID”

target_audience

list of target audiences (eg [‘CITIZENS”,
“COMPANIES™])

territory_id

ID of a territorial tag in the data core

visible

true = public service, false = private service;
defaults to false. When a service is private,
the Kernel restricts access to members
(app_user / app_admin); typically used for
dogfooding a service.

restricted

true = the service restricts access to
members (app_user / app_admin). A
restricted service cannot be made visible;
typically used for back office services.
Defaults to false.

service_uri

Main URL of the service

notification_uri

(optional) URL used when there are
notifications on the service

redirect_uris

Whitelist of authentication callbacks

post_logout_redirect_uris

(optional) Whitelist of post-logout callbacks

subscription_uri

(optional) URL of the Subscription Callback
NOT IMPLEMENTED YET

Scope object:

Field name Description

local_id “Local” identifier for the scope (local to the
instance)

name Name of the scope in the default language

name#lang Name of the scope in language “lang”

description Description of the scope in the default

language

description#lang

Description of the scope in language “lang”

NeededScope object:

Field name

Description

scope_id

motivation Motivation for using the scope, in the default
language
motivation#lang Motivation for using the scope, in language
“lang”
Kernel -> Service (subscription callback)
NOT IMPLEMENTED YET
Field name Description
subscription_id
user_id Id of the user
organization_id ID of the user’s organization (if any)
organization_name Name of that organization
service_id ID of the service
subscription_management_uri For acknowledgement

Service -> Kernel (subscription created)
NOT IMPLEMENTED YET

POST {subscription_management_uri} => approve the subscription
DELETE {subscription_management_uri} => deny the subscription

Appendix 3: integration with the rest of the system

User access:

Users (end users and administrators alike) always reach your application through a service.
So you have to declare at least one service.

In the Portal, Managers declare a whitelist of users allowed to use the private services of an
application instance. The authentication system will block all other users from accessing the
service. Public services (with visible=true) are not subject to such blocking.

Applications can declare services as having restricted access (restricted=true) to signal that
they will never allow a user that has not been whitelisted to access it. Such services cannot
be made public.

Authentication:

Authentication requests must be done using the client_id and client_secret provided by the
Kernel during instance creation, and must use the redirect_uri provided during service
creation.

At the end of the authentication process, the Kernel informs your application if the logged-in
user is a regular user, an application administrator, both, or none (can only be the case for
public services).

Notifications:

If your application sends notifications, it is required to use (as much as possible) the service id
matching the user’s action - this is used in the Portal to display notification badges on the
correct icons.

Appendix 4: “degenerate” cases
What if your application scenario doesn't fit the idealized process?
e Single instance applications
o it's best if you can obtain a different client_id for each client (municipality...) so
it can fit in the model here
o otherwise what you pre-publish is not an application but directly a service and
you use the Subscription callback to be notified / create permissions to the
users.
e Other cases?

