

Version 1.4

Technical integration guide

1 | P a g e

Table of Contents

1. Preface.. 3

1.1. Intended audience .. 3

1.2. Where to get additional information .. 3

1.3. Support ... 3

1.3. Glossary .. 3

1.4. Acronyms .. 6

2. Introduction ... 6

2.1. Purpose of the document ... 6

2.2. General principle ... 7

2.3. Payment flow ... 7

2.4. Security ... 9

2.5. Secret Key ... 9

3. Description of the protocol ... 9

3.1. Post fields .. 9

3.1.1. Data field ... 10

3.1.2. Seal field .. 10

3.1.3. Encode field .. 10

4. How to make a payment ... 11

4.1. Payment request... 11

4.1.1. Fields for the payment request .. 11

4.1.2. Example ... 11

4.1.3. Error management .. 11

4.2. Response message .. 13

4.2.1. Manual response ... 13

4.2.2. Automatic response ... 13

4.2.3. Payment request response codes .. 14

4.2.4. Acquirer response codes ... 15

2 | P a g e

4.2.5. Problems with receiving a response .. 16

4.2.6. Error Handling - No signature in the response 16

5. How to sign a message ... 16

5.1. Reason for signing a message .. 16

5.2. Method used for signing a message ... 17

5.3. Code examples ... 17

5.3.1. Php 5 ... 17

5.3.2. Java .. 17

5.3.3. .net ... 19

6 Message description .. 21

6.1 Payment request... 21

6.1.1 Generic fields .. 21

6.1.2 Optional fields related to fraude detection 21

6.1.3 Optional fields related to recurring payments 22

6.1.4 Optional fields related to the payment page 22

6.1.5 Optional fields related to the payment mean Paypal 22

6.1.6 Optional fields related to the payment mean SDD 23

6.2 Payment response (automatic and manual) .. 25

6. Testing .. 28

6.1. How to test .. 28

6.2. Testing card transactions ... 28

6.3. Testing iDEAL transactions ... 29

7. Going Live ... 29

7.1. Merchant IDs .. 30

7.2. Production validation ... 30

3 | P a g e

1. Preface

1.1. Intended audience

This document is intended for developers and technical profiles implementing

Sips.

Installation requires knowledge of at least one programming language, such as

PHP, .NET or Java.

1.2. Where to get additional information

For information on the administrative tasks you can perform regarding

transactions, see the Full User guide that is available on our website.

1.3. Support

Customer Support is available from 9h00 to 17h00.

Contact support:

E-mail: supportsips-benelux@worldline.com

1.3. Glossary

3-D Secure: Common technological standard (3 Domain Secure) of Visa and

MasterCard, set up to make online credit card payments more secure. For

commercial reasons, Visa and MasterCard use different brand names: Verified

by Visa and MasterCard SecureCode.

Buyer: The buyer is an Internet user who connects to the Merchant's website

and pays for a given good or service.

Acquirer: The financial establishment who receives financial information

pertaining to a transaction from the acceptor (the merchant, its payment service

provider) and enters this information into an exchange system.

Authorization request: Verification of the validity of the cardholder's card with

financial institutions. In addition to verifying the card number, this request

involves verifying that the card really is a valid payment method, that it has not

been stopped and that the amount presented will be cleared.

Capture: Please see collection.

(Card) issuer: Institution who has issued an payment card to a cardholder.

Card security code, CVV2, CVC2 or CBN2 (Visual card security code): 3-digit

key located on the signature strip on the back of Visa and Mastercard. This adds

an additional level of security for remote sales. On American Express cards, the

card security code is a 4-digit number (4DBC).

mailto:supportsips-benelux@worldline.com

4 | P a g e

Collection: Collection operation completed in payment of the transactions,

meaning the credit/debit of the merchant's account and the debit/credit of the

Internet user's account. The capture of a transaction means that it will be

collected and will therefore be sent to the bank's merchant processing centre.

Host: Service company which hosts one or more websites on its own servers

connected to the Internet. A host occasionally provides website

creation/management services.

Internet user: Online Client of the Merchant.

Merchant: Individual person or legal entity who has an online shop. Sips

merchants are registered with Worldline and can use the secure online payment

service.

merchantID: Unique merchant identifier used by Worldline

Networks (electronic payment): Group of bodies who issue payment methods

after having entered into a reciprocal exchange agreement for cardholder

(issuer) and merchant (acceptor) movements.

Operations log: Log generally sent to the merchant via email on a daily basis

and which contains all the operations made by the merchant on the Sips Office

Extranet interface or using the Sips Office Connect connector (reimbursement,

validation, cancellation operations etc.) since the previous day's log was sent.

Preproduction: Stage during which the merchants use their production

certificate which was given to them when they created their Sips shop.

Preproduction tests make it possible to validate that the merchant's contract is

operational.

Secret key: Unique value which makes it possible to ensure the confidentiality

and integrity of payment via the Internet.

Secure Payment: Transactions booked on the Internet are protected from

unauthorized interceptions and also from unauthorized edits and alterations to

the original content of messages.

Sips: International multi-channel secure payment solution provided by

Worldline.

Transaction log: Log sent to the merchant on a daily basis, generally via

email, containing all the transactions made on a given website since the

previous day's log was sent.

5 | P a g e

Transaction reconciliation log: Log which may be sent to the merchant on a

daily basis. This log makes it possible to reconcile transactions booked by the

merchant in their Sips shop against transactions which were in fact processed by

their banking establishment's merchant processing center. This corresponds to

what will actually be credited to/debited from their account and alerts the

merchant in case of a non-reconciled transaction. This log makes accounting

easier for merchants.

transactionReference: Characteristic identifier for each transaction. The

merchant can monitor the progress of each transaction using the TREF.

6 | P a g e

1.4. Acronyms

Acronym Meaning

CTC Merchant Processing Centre

CVV Card verification value (Visa)

CVC Card validation code (Mastercard)

HTTPS Hypertext Transfer Protocol Secure

ISO International Standard Organisation

PAN Personal Account Number

TREF TransactionReference

2. Introduction
This document describes how to integrate Sips with the merchant’site (webshop).

The introduction will tell you what you need to know before getting started with

integrating Sips with your webshop.

Protocol definition and the provided examples will provide all the information you

need to integrate Sips with your site. Testing will provide all relevant information

to test your integration properly before going live. If you should have any

questions regarding the integration of your webshop with Sips, please do not

hesitate to contact the Sips customer support team.

2.1. Purpose of the document

The purpose of the present document is to explain how to implement the Sips

Payment Direct solution and how to begin the initial payment tests.

This document is aimed at all Merchants who wish to subscribe to the Sips offer

and wish to use a connector based on HTTP(s) POST exchanges between

Merchant websites and the Sips servers, while using Sips Payment Direct as a

gateway. It is aimed at the Merchants technical team, not the business team.

This connector endeavors to be as Plug & Play as possible for the Merchant.

7 | P a g e

2.2. General principle

1. When the Internet user confirms their basket, they are redirected towards the Sips

Payment servers. The payment request is then checked and, if valid, it is encrypted

(named RedirectionData in the system).

2. The Internet user is then automatically redirected towards the Sips Payment pages, with

the encrypted request. This request is decrypted and the Sips Payment page invites the

Internet user to enter the information for their method of payment.

2.3. Payment flow

There are three flows to implement between the Merchant's website and the

payment server in order to integrate the solution.

Sips Payment

Direct

Merchant Connector

Internet payment

HTTPS POST

Data=amount=5999|currencyCode=978|merchant…
InterfaceVersion= HP_1.0
Seal= 87027226f12…

1

Automatic
redirection

RedirectionData = 4AgbsrffvPgzD…

2

Sips Payment pages

8 | P a g e

Step 1: Once the Internet user proceeds to the payment stage, a payment

request must be sent to the Sips Payment Direct gateway. Worldline gives the

Merchant the gateway URL. The best method of managing this call is to send a

form as a POST HTTPS, but any other solution which could send a POST HTTPS

request would also work.

Step 2: The Sips Payment Direct gateway will redirect the calling application to

the Sips payment pages. The Internet user must enter the details for the

payment method so that the Sips payment server can process the transaction. It

is worth noting that payment details can be entered directly on the server which

issued the payment method (for example: Credit transfer or PayPal). At the end

of the payment process, regardless of whether it was successful or not, two

responses are created and sent to the response URLs provided during flow 1.

There are two separate notification procedures:

 Step 3: Manual responses are sent as HTTP(S) POSTs by the payment server to the normal

response normal response URL provided during the payment request when the Internet user

clicks on "Return to shop" on the payment page. This is why the normal response URL is also

the destination page where the Internet user is redirected at the end of payment. There is no

guarantee that the Internet user will click on this link, consequently there is no guarantee that

the manual response will be received.

 Step 3’: Automatic responses are sent separately to manual responses. They also use HTTP(s)

POSTs requests sent by Sips payment servers but via the automatic response URL, in this case

 The Internet

user proceeds to

payment (payment

request)

The gateway

redirects the

Internet user to

the payment

page

Automatic

response

service

Payment page

on the

Merchant's

website

Sips Payment Direct

gateway

Page for

returning to

the

Merchant's

 The Internet user returns to the Merchant's

website (manual response)

 The gateway sends an automatic response to the

Merchant's website

9 | P a g e

provided during the payment request. This means that the Merchant will always receive this

response as soon as the payment is completed on the Sips payment pages.

2.4. Security

Sips is PCI DSS-compliant (Payment Card Industry Data Security Standard).

This means that the response message contains no customer information such

as bank account or credit card number, PAN number or other customer

information. Instead, a unique transaction reference number

(transactionReference) is used to match the response message to the order in

the webshop and the appropriate customer. We also recommend using an order

number as an extra idenfication field in the payment request (orderID).

2.5. Secret Key

The payment request and the response message between the webshop and Sips

are exchanged securely, thanks to the use of a secret key. You can find the Sips

secret key on the downloadsite: https://download.sips-atos.com.

After the signed Sips contract is received by Worldline, the technical contact

person will receive the username for the downloadsite by e-mail. The password

will be sent to the contract requester. For more information about the

downloadsite, please consult the user manual.

For the test environment you do not need your own secret key to install and

test. In this environment you can use the general test merchant ID and its

corresponding secret key. See chapter testing for more information.

3. Description of the protocol

3.1. Post fields

3 mandatory fields are provided during the payment requests and responses.

Data Contains all the information related to the transaction,

gathered in a character chain as described in section Data field

InterfaceVersion Version of the connector interface.

Seal Used to validate the integrity of the data exchanged. The Seal

field is calculated using the Data field and the secret key field,

as described in section Seal field

https://download.sips-atos.com/

10 | P a g e

An additional optional field is available:

Encode Provides the coding used in the Data field, as described in

section Encode field

3.1.1. Data field

The Data field is built according to the following format:

 <field name>=<value name>|<field name>=<value name>|<field

name>=<value name> etc.

All the fields necessary for the transaction (please see details in the data

dictionary) must be present in this character chain. The order of the fields is

irrelevant.

Example of a payment request:

amount=55|currencyCode=978|merchantId=011223744550001|normalReturnUrl=http://www.normalretu

rnurl.com|transactionReference=534654|keyVersion=1

3.1.2. Seal field

The value of the Seal field is built as follows:

 Concatenation of the Data field and the secret key (encoded if the

encoding option is used. See section Encode field)

 Obtaining the UTF-8 encoding of the data for the previous result

 SHA256 encrypting of the bytes obtained

This procedure can be summarized as follows:

SHA256(UTF-8(Data+secretKey))

3.1.3. Encode field

In the event that special characters appear in the Data field, the value of this

field must be encoded.

Two encoding formats can be used: base64 or base64Url.

It is worth noting that, as the calculation of the signature is made in the Data

field, when encoding is applied, it is the encoded value for the Data field

which is used for this calculation.

11 | P a g e

4. How to make a payment

4.1. Payment request

The payment request is an HTTP POST call to the connector on the payment

gateway. The simplest way of making this call is an HTML form, using the POST

method.

4.1.1. Fields for the payment request

All the data for the payment request must be provided as outlined in chapter

Description of the protocol.

InterfaceVersion must be set to HP_2.3.

The data dictionary and the message description chapter describe all the

settings for the payment request, their format as well as whether they are

mandatory or optional.

4.1.2. Example

A form example is shown below:

<form method="post" action="https://url.to.sips.server/paymentInit">

 <input type="hidden" name="Data"

value="amount=55|currencyCode=978|merchantId=011223744550001|nor

malReturnUrl=http://www.normalreturnurl.com|transactionReference=534

654|keyVersion=1">

 <input type="hidden" name="InterfaceVersion" value="HP_2.3">

 <input type="hidden" name="Seal"

value="21a57f2fe765e1ae4a8bf15d73fc1bf2a533f547f2343d12a499d9c059

2044d4">

 <input type="submit" value="Proceed to payment">

 </form>

4.1.3. Error management

All the fields received through the connector for the Sips Payment Direct

gateway are checked individually. The list of error messages which may be

displayed during this verification stage as well as the solutions to implement

are described in the table below.

12 | P a g e

Message Cause Solution

Unknown version

interface: <version>

The value <version> in the

field POST InterfaceVersion is

unknown

Check the interface

version in this user

guide

Invalid keyword:

<name param

>=<value param>

The request contains a <name

param> setting, which is not

expected in the payment

request

Check the settings for

the payment request

in the data dictionary

Invalid field size:

<name param

>=<value param>

The value of the setting

<name param> is not the

correct length

Check the length of

the settings for the

payment request in

the data dictionary

Invalid field value:

<name param

>=<value param>

The value of the setting

<name param> is not in the

correct format

Check the format of

the settings for the

payment request in

the data dictionary

Mandatory field

missing: <name

param >

The mandatory setting <name

of the param >is missing from

the payment request

Check the mandatory

settings for the

payment request in

the data dictionary.

Unknown security

version: <version>

The value <version> in the

keyVersion setting is unknown

Check the versions of

keys which are

available on the

Merchant interface

Invalid signature Verification of the signature for

the payment request has

failed. This may be due to

incorrect calculation of the

signature or may indicate that

some fields were falsified after

the signature was calculated.

Check the signature

calculation regulations

in the data dictionary.

Transaction already

processed:

<transaction

reference>

A payment request with the

same transactionReference has

already been received and

processed by the Sips servers

Check that the

transactionReference

is unique for a given

transaction

<Other messages> In case of technical errors,

there can be various other

error messages.

Contact technical

support.

13 | P a g e

4.2. Response message

Two types of responses are possible. Although the protocols, formats and

content of the two responses are exactly the same, the two responses must be

managed differently as they meet two different needs.

4.2.1. Manual response

The main goal of the manual response is to redirect the Internet user to the

Merchant's website with the payment result, so that the Merchant can make

the right decision as regards their customer. For example, in case of an

error, the Merchant may suggest trying the payment again and relaunching

the process. In case of a successful payment, the Merchant may display a

thank you message and begin to deliver the merchandise, if need be.

The last stage in the Sips Payment payment process involves displaying a

redirection link to the customer. When the Internet user clicks on this link,

the Sips server redirects them to the URL contained in the field

normalReturnUrl, which is provided at the beginning of the payment process.

Redirection is an HTTP POST request which contains the response settings as

described in section. It is the Merchant's responsibility to recover these

settings and check the signature, thus ensuring the integrity of the response

data. It is also the Merchant's responsibility to display relevant messages to

their customer which relate to the response details.

It is important to note that receipt of the response is not guaranteed, as it is

sent by the Internet user's browser. Basically, the final user has the option

not to click on the link, or the Internet user's Internet connection may simply

encounter a problem and may block the transmission of this response.

Consequently, the Merchant's business processes must not be based solely

on this response.

4.2.2. Automatic response

An automatic response is only sent if the field automaticResponseUrl was

sent in the payment request. If this is the case, the Sips server sends an http

POST response to the URL received. The response fields are identical to those

sent to the manual response. The only difference between the two

procedures is that the automatic response is sent directly by the Sips server,

without passing through the Internet user's browser. Consequently, it is

much more reliable as it will always be sent. Another consequence is that the

procedure in charge of the receipt of this response must not try to respond to

the calling application. Basically, the Sips server does not wait for any

response following the transmission of the automatic response.

14 | P a g e

As with the manual response, the fields for the automatic response are

described in section Respons message. It is the Merchant's responsibility to

recover the response settings, register them in encrypted form, check the

signature to ensure the integrity of the response fields and therefore update

the Merchant back office as a result.

4.2.3. Payment request response codes

Hereby all response codes related to the payment request.

Value Description

00 Authorisation accepted

02 Authorisation request to be performed via telephone

with the issuer, as the card authorisation threshold
has been exceeded, if the forcing is authorised for
the merchant

03 Invalid distance selling contract

05 Authorisation refused

12 Invalid transaction, verify the parameters

transferred in the request.

14 invalid bank details or card security code

17 Buyer cancellation

24 Operation impossible. The operation the merchant
wishes to perform is not compatible with the status
of the transaction.

25 Transaction not found in the Sips database

30 Format error

34 Suspicion of fraud

40 Function not supported: the operation that the

merchant would like to perform is not part of the list
of operations for which the merchant is authorised

51 Amount too high

54 Card is past expiry date

60 Transaction pending

63 Security rules not observed, transaction stopped

75 Number of attempts at entering the card number
exceeded

90 Service temporarily unavailable

94 Duplicated transaction: for a given day, the
TransactionReference has already been used

97 Timeframe exceeded, transaction refused

99 Temporary problem at the Sips Office Server level

15 | P a g e

4.2.4. Acquirer response codes

Hereby all response codes related to the issuing request.

Value Description

00 Transaction approved or processed successfully

02 Contact card issuer

03 Invalid acceptor

04 Retain the card

05 Do not honour

07 Retain the card, special circumstances

08 Approve after obtaining identification

12 Invalid transaction

13 Invalid amount

14 Invalid cardholder number

15 Card issuer unknown

30 Format error

31 Identifier of acquirer entity unknown

33 Card is past expiry date

34 Suspicion of fraud

41 Card lost

43 Card stolen

51 Insufficient funds or credit limit exceeded

54 Card is past expiry date

56 Card missing from file

57 Transaction not permitted for this cardholder

58 Transaction prohibited at terminal

59 Suspicion of fraud

60 The acceptor of the card must contact the Acquirer

61 Exceeds the withdrawal amount limit

63 Security rules not observed

68 Response not received or received too late

90 Momentary system crash

91 Card issuer inaccessible

96 System functioning incorrectly

97 Expiry of the global monitoring delay

98 Server unavailable network routing further request

99 Incident field initiator

16 | P a g e

4.2.5. Problems with receiving a response

You will find below a list of the most common problems encountered

preventing the reception of automatic and manual responses. Please make

sure to have them checked before initiating a call with the helpdesk .

 Check that the URLs answers are provided in the application for

payment and are valid. You can simply copy / paste the URLs into your

browser to check their validity.

 The URLs provided must be accessible from the outside and therefore

the internet. A (password login or IP filter /) access control or a

firewall can block access to your server.

 Access to URLs answers should appear in the notification log of your

web server.

 If you use a non-standard port , it must be in the range 80 to 9999 to

be compatible with Sips .

 You cannot add contextual parameters to URLs answers. The orderId

field is deemed to receive these additional parameters , or

alternatively a sessionId that allow the merchant to find customer

information at the end of the payment process .

4.2.6. Error Handling - No signature in the response

There are cases where the error Sips server is not capacity to sign the

response message. For example, in a "MerchantID unknown" error or if the

secret key is unknown to the Sips repository. For these particular reasons,

the payment server will send the response without signing in Seal field.

5. How to sign a message

5.1. Reason for signing a message
The payment request contains the transaction settings and is sent through the Internet

user’s browser. It is theoretically possible for a hacker to intercept the request and

change the settings before the data reaches the payment server.

Therefore, it is necessary to add security to ensure the integrity of the transaction

settings sent. The Sips solution meets this need by exchanging signatures.

A successful signature check involves two things:

- The integrity of the request and response messages, no alteration during

exchange

- The authentication of the issuer and receiver, as they share the same secret

key.

17 | P a g e

5.2. Method used for signing a message

The signature operation is completed by calculating the encrypted value based

on the transaction's settings (the Data field) to which the secret key (unknown

by the Internet user) is added. All character chains are converted to UTF8 before

being encrypted.

The encrypting algorithm (SHA256) produces an irreversible result. Generally,

when such a message is received, the message receiver must recalculate the

encrypted value in order to compare it with the value received. Any difference

indicates that the data exchanged was falsified.

The result must be sent in hexadecimal form in the POST field, named Seal.

5.3. Code examples

5.3.1. Php 5
<?php

echo hash('sha256', $data.$secretKey);

?>

Data and secretKey must use a UTF-8 character set. Refer to the

utf8_encode function to convert from ISO-8859-1 to UTF-8.

5.3.2. Java
import java.security.MessageDigest;

public class ExampleSHA256 {

 /**

 * table to convert a nibble to a hex char.

 */

 static final char[] hexChar = {

 '0' , '1' , '2' , '3' ,

 '4' , '5' , '6' , '7' ,

 '8' , '9' , 'a' , 'b' ,

 'c' , 'd' , 'e' , 'f'};

 /**

 * Fast convert a byte array to a hex string

18 | P a g e

 * with possible leading zero.

 * @param b array of bytes to convert to string

 * @return hex representation, two chars per byte.

 */

 public static String encodeHexString (byte[] b)

 {

 StringBuffer sb = new StringBuffer(b.length * 2);

 for (int i=0; i<b.length; i++)

 {

 // look up high nibble char

 sb.append(hexChar [(b[i] & 0xf0) >>> 4]);

 // look up low nibble char

 sb.append(hexChar [b[i] & 0x0f]);

 }

 return sb.toString();

 }

 /**

 * Computes the seal

 * @param Data the parameters to cipher

 * @param secretKey the secret key to append to the parameters

 * @return hex representation of the seal, two chars per byte.

 */

 public static String computeSeal(String Data, String secretKey) throws Exception

 {

 MessageDigest md = MessageDigest.getInstance("SHA-256");

 md.update((Data+secretKey).getBytes("UTF-8"));

19 | P a g e

 return encodeHexString(md.digest());

 }

 /**

 * @param args

 */

 public static void main(String[] args) {response

 try {

 System.out.println (computeSeal("parameters", "key"));

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

5.3.3. .net

(Completed using a simple form called "Form 1" containing two text fields for

entering: txtSips, txtSecretKey and another for displaying: lblHEX)

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.Security.Cryptography;

namespace ExampleDotNET

{

 public partial class Form1 : Form

20 | P a g e

 {

 public Form1()

 {

 InitializeComponent();

 }

 private void cmdGO_Click(object sender, EventArgs e)

 {

 String sChaine = txtSips.Text + txtSecretKey.Text;

 UTF8Encoding utf8 = new UTF8Encoding();

 Byte[] encodedBytes = utf8.GetBytes(sChaine);

 byte[] shaResult;

 SHA256 shaM = new SHA256Managed();

 shaResult = shaM.ComputeHash(encodedBytes);

 lblHEX.Text = ByteArrayToHEX(shaResult);

 }

 private string ByteArrayToHEX(byte[] ba)

 {

 StringBuilder hex = new StringBuilder(ba.Length * 2);

 foreach (byte b in ba)

 hex.AppendFormat("{0:x2}", b);

 return hex.ToString();

 }

 }

}

21 | P a g e

6 Message description

6.1 Payment request

6.1.1 Generic fields

Field Required

captureDay No

captureMode No

currencyCode Yes

merchantId Yes

normalReturnUrl Yes

amount Yes

transactionReference Yes

keyVersion Yes

automaticResponseUrl No

customerId No

customerIpAddress No

customerLanguage No

expirationDate No

hashSalt1 No

hashSalt2 No

hashAlgorithm1 No

hashAlgorithm2 No

invoiceReference No

merchantSessionId No

merchantTransactionDateTime No

merchantWalletID No

orderChannel No

orderId No

paymentMeanBrandList No

paymentPattern No

returnContext No

statementReference No

templateName No

transactionActors No

transactionOrigin No

6.1.2 Optional fields related to fraude detection

Field Required

fraudData.allowedCardArea No

22 | P a g e

fraudData.allowedCardCountryList No

fraudData.allowedIpArea No

fraudData.allowedIpCountryList No

fraudData.bypass3DS No

fraudData.bypassCtrlList No

fraudData.bypassInfoList No

fraudData.deniedCardArea No

fraudData.deniedCardCountryList No

fraudData.deniedIpArea No

fraudData.deniedIpCountryList No

6.1.3 Optional fields related to payment in N instalment

Field Required

instalmentData.number No

instalmentData.datesList No

instalmentData.transactionReferencesList No

instalmentData.amountsList No

6.1.4 Optional fields related to the payment page

Field Required

paypageData.bypassReceiptPage No

6.1.5 Optional fields related to authentication

Field Required

authenticationData.check3DS No

authenticationData.checkCSC No

6.1.6 Optional fields related to the payment mean Paypal

Field Required

paymentMeanData.paypal.landingPage No

paymentMeanData.paypal.addrOverride No

paymentMeanData.paypal.invoiceId No

paymentMeanData.paypal.dupFlag No

paymentMeanData.paypal.dupDesc No

23 | P a g e

paymentMeanData.paypal.dupCustom No

paymentMeanData.paypal.dupType No

paymentMeanData.paypal.mobile No

6.1.7 Optional fields related to the payment mean SDD

6.1.8 Optional fields for billing data

6.1.8.1 Billing address

Field Required

billingAddress.addressAdditional1 No

billingAddress.addressAdditional2 No

billingAddress.addressAdditional3 No

billingAddress.city No

billingAddress.company No

billingAddress.country No

billingAddress.postBox No

billingAddress.state No

billingAddress.street No

billingAddress.streetNumber No

billingAddress.zipCode No

6.1.8.2 Billing address

Field Required

billingContact.email No

billingContact.firstname No

billingContact.gender No

billingContact.lastname No

billingContact.mobile No

billingContact.phone No

billingContact.title No

Field Required

paymentMeanData.sdd.mandateAuthentMethod No

paymentMeanData.sdd.mandateUsage No

24 | P a g e

6.1.9 Optional fields for customer data

6.1.9.1 Customeraddress

Field Required

customerAddress.addressAdditional1 No

customerAddress.addressAdditional2 No

customerAddress.addressAdditional3 No

customerAddress.city No

customerAddress.company No

customerAddress.country No

customerAddress.postBox No

customerAddress.state No

customerAddress.street No

customerAddress.streetNumber No

customerAddress.zipCode No

6.1.9.2 Customer contact

Field Required

customerContact.email No

customerContact.firstname No

customerContact.gender No

customerContact.lastname No

customerContact.mobile No

customerContact.phone No

customerContact.title No

6.1.9.3 Customer data

Field Required

customerData.birthCity No

customerData.birthCountry No

customerData.birthDate No

customerData.birthZipCode No

customerData.nationalityCountry No

customerData.newPwd No

customerData.pwd No

25 | P a g e

6.1.10 Optional fields for delivery

6.1.10.1 Delivery address

Field Required

deliveryAddress.addressAdditional1 No

deliveryAddress.addressAdditional2 No

deliveryAddress.addressAdditional3 No

deliveryAddress.city No

deliveryAddress.company No

deliveryAddress.country No

deliveryAddress.postBox No

deliveryAddress.state No

deliveryAddress.street No

deliveryAddress.streetNumber No

deliveryAddress.zipCode No

6.1.10.2 Delivery contact

Field Presence (M/O)

deliveryContact.email O

deliveryContact.firstname O

deliveryContact.gender O

deliveryContact.lastname O

deliveryContact.mobile O

deliveryContact.phone O

deliveryContact.Title O

6.2 Payment response (automatic and manual)

The content of the manual response is the same for automatic response. The

contents follow the result of the payment (with success or not).

Fieldname Required Included

in
version

Comment

26 | P a g e

acquirerResponseCode YES HP_2.0

Amount YES HP_1.0 Value is passed in
the payment

request.

autorisationId YES HP_1.0 Value is passed in

the payment
request.

captureDay YES HP_1.0 Value is passed in
the payment

request.

captureLimiteDate NO HP_2.3

captureMode YES HP_1.0 Value is passed in
the payment
request.

cardCSCResultCode YES HP_2.0

complementaryCode* NO HP_1.0

complementaryInfo* NO HP_2.0

currencyCode YES HP_1.0 Value is passed in
the payment

request.

customerEmail YES HP_2.0 Value is passed in

the payment
request. Only
available for

version HP_2.0

customerId YES HP_2.0 Value is passed in

the payment
request.

customerIpAddress YES HP_2.0 Value is passed in
the payment

request.

customerMobilePhone YES HP_2.1 Value is passed in
the payment

request. Only
available for

version HP_2.1

dccStatus* NO HP_2.3

dccResponseCode* NO HP_2.3

dccAmount* NO HP_2.3

dccExchangeRate* NO HP_2.3

dccProvider* NO HP_2.3

dccCurrencyCode* NO HP_2.3

guaranteeIndicator NO HP_2.0

hashPan1 NO HP_2.3

hashPan2 NO HP_2.3

holderAuthentMethod* NO HP_2.4

27 | P a g e

holderAuthentRelegation* NO HP_2.0

holderAuthentStatus* NO HP_2.0

interfaceVersion* NO HP_1.0

issuerEnrollementIndicator* NO HP_2.0

keyVersion YES HP_1.0 Value is passed in
the payment
request.

maskedPan* NO HP_1.0

merchantId YES HP_1.0 Value is passed in
the payment
request.

merchantSessionId YES HP_2.0 Value is passed in
the payment

request.

merchantTransactionDateTime YES HP_2.0 Value is passed in

the payment
request.

merchantWalletID YES HP_2.0 Value is passed in
the payment

request.

orderChannel YES HP_2.0 Value is passed in

the payment
request.

orderId YES HP_1.0 Value is passed in
the payment
request.

panEntryMode** NO HP_2.4

panExpiryDate* NO HP_2.0

paymentMeanBrand* NO HP_1.0

paymentMeanData.sdd* NO HP_2.3

paymentMeanType* YES HP_1.0

paymentPattern YES HP_2.0 Value is passed in
the payment

request.

responseCode YES HP_1.0

returnContext NO HP_1.0 Value is passed in
the payment

request.

scoreColor* NO HP_2.0

scoreInfo* NO HP_2.0

scoreProfile* NO HP_2.0

scoreThreshold* NO HP_2.0

scoreValue* NO HP_2.0

statementReference* NO HP_2.4 Value is passed in
the payment

request.

28 | P a g e

tokenPan* NO HP_2.0

transactionActor YES HP_2.2 Value is passed in
the payment

request.

transactionDateTime YES HP_1.0

transactionOrigin YES HP_2.0 Value is passed in
the payment

request.

transactionReference YES HP_1.0 Value is passed in

the payment
request.

walletType NO HP_2.4

* These fields are provided when available, depending on the status of the

transaction and the payment method chosen.

7. Testing

7.1. How to test

The test and integration stages can be completed using the pooled

demonstration environment.

The technical details required to use this environment are described below:

Connector demo URL https://payment-webinit.simu.sips-

atos.com/paymentInit

Merchant ID 002001000000001

Version of the key 1

Secret key 002001000000001_KEY1

In the simulation environment, the authorization process is simulated. This

means that it is not necessary to use the real payment methods in order to

complete these tests.

7.2. Testing card transactions

When you select Visa, Mastercard or Maestro, you will be redirected towards the

card information page, where you can enter your card details.

29 | P a g e

The following simulation regulations apply to all cards:

 The PAN must be between 16 and 19 digits long.

 The first six digits of the PAN determine the type of card, according to the

table below:

Card type Beginning of the card number

VISA 410000

Mastercard 510000

Maestro 500000

 You can simulate all response codes (cf. data dictionary) by changing the

last two digits.

 The security code is three or four digits long. This value is irrelevant to

the result of the transaction.

Example: if you use card number 4100000000000005, the card will be identified

as a VISA and the payment will be refused (response code 05).

7.3. Testing iDEAL transactions

When you select iDEAL, you are redirected to the iDEAL simulation server, which

simulates an iDEAL transaction according to the transaction amount. Then you

return to the payment server which displays the ticket with the transaction

result.

iDEAL simulation regulations:

Transaction amount iDEAL response

EUR 2.00 Transaction cancelled

EUR 3.00 Transaction expired

EUR 4.00 Transaction not completed

EUR 5.00 Transaction failure

Other cases Transaction OK

8. Going Live
The next step is to connect to the production environment for the real start-up.

In order to do this, the Merchant must change the payment server URL and use the

Merchant IDs received during the registration stage.

30 | P a g e

8.1. Merchant IDs

The URL for the production payment server is: https://payment-webinit.sips-

atos.com/paymentInit

To access the production environment, you will need the following three pieces

of information:

- The Merchant ID (merchantID) which identifies the eCommerce site on
the Sips payment server

- The version (keyVersion) of the secret key

- The secret key (secretKey) used to sign requests and verify responses

The Merchant ID (merchantID) is provided at the end of the Merchant

registration stage.

You can download the version of the key (keyVersion) and the secret key

(secretKey) from the extranet https://download.sips-atos.com using the

username and password provided by technical support at the end of the

Merchant registration stage.

8.2. Production validation

Once the Merchant starts using their own IDs on the production server, any

transactions performed are real from end-to-end, up until the funds are credited

to the Merchant's account and debited from the Buyer's account.

Before the shop is really opened to the public, the Merchant may submit a

request to validate the end-to-end payment, up until the funds are credited to

the Merchant's account and debited from the Buyer's account.

https://download.sips-atos.com/

